

Vorstellung des aktuellen Energiesystems inkl. Lastganganalyse und wirtschaftlichen Faktoren

Vergleich der Varianten

Wirtschaftlicher Vergleich verschiedener grüner Energiesysteme

Variante 5 MWh | ohne Atypik

Vorstellung eines optimierten Energiesystems **ohne** atypische Netznutzung inkl. Wirtschaftlichkeitsrechnung

Weiteres Vorgehen

Nächste Schritte und Ansprechpartner

Variante 5 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung



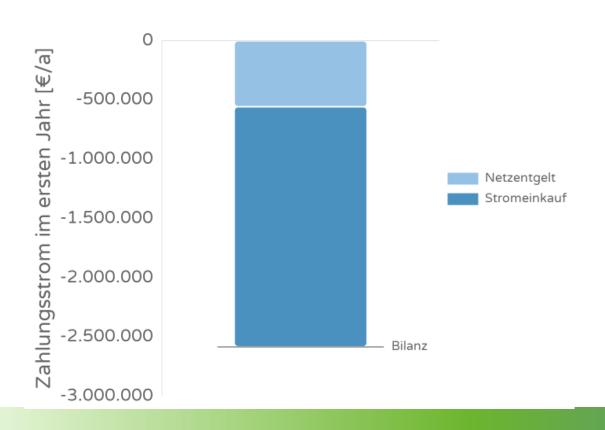
Variante 10 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Folgende Komponenten wurden für die Lastganganalyse der Ausgangslage berücksichtigt

Stromnachfrage

Es werden insgesamt 12.665.270 kWh benötigt und davon 12.665.270 kWh aus dem Netz bezogen.



Netzentgelte

Über den zuständigen Verteilnetzbetreiber Stadtwerke Schweinfurt GmbH werden 4.889 Benutzungsstunden mit einer Spitzenlast von 2.591 kW bezogen.

In der Ausgangslage setzen sich die **laufenden Kosten** wie folgt zusammen

- Es wird über einen "Flacher Stromtarif" mit (durchschnittlich) 16 ct/kWh Strom aus dem Netz zu jährlich 2.026.443 € eingekauft.
- Der Leistungspreis Netz liegt bei 176,69 €/kW und der Arbeitspreis Netz bei 0,8 ct/kWh zu insgesamt 556.538 € Netzentgelten im Jahr.

Vorstellung des aktuellen Energiesystems inkl. Lastganganalyse und wirtschaftlichen Faktoren

Vergleich der Varianten

Wirtschaftlicher Vergleich verschiedener grüner Energiesysteme

Variante 5 MWh | ohne Atypik

Vorstellung eines optimierten Energiesystems **ohne** atypische Netznutzung inkl. Wirtschaftlichkeitsrechnung

Weiteres Vorgehen

Nächste Schritte und Ansprechpartner

Variante 5 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Variante 10 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Die **Optimierung** hat folgendes Energiesystem **technisch und wirtschaftlich ausgelegt**

Batteriespeicher

Es wurde ein Batteriespeicher 5.000 kWh / 2.500 kW geplant. Vollzyklen pro Jahr: 379

Einspar- und Erlöspotenziale

Investitionssumme (CAPEX)

3.000.000 €

Mittlere Rendite

46 %

Amortisationszeit

2,2 Jahre

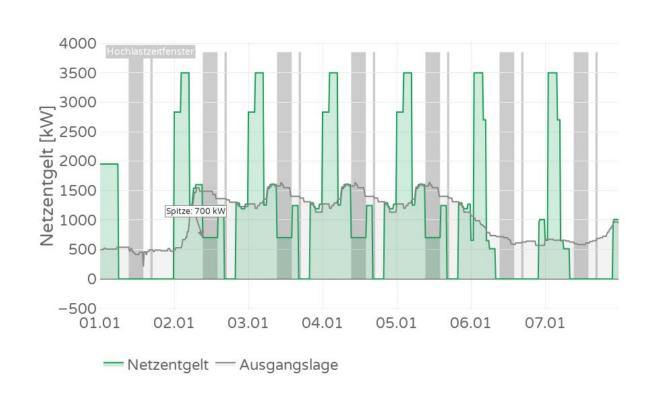
Kapitalwert Über 20 Jahre

5.513.703 €

Dynamische Beschaffung

Reduktion der Energiekosten um

26 %

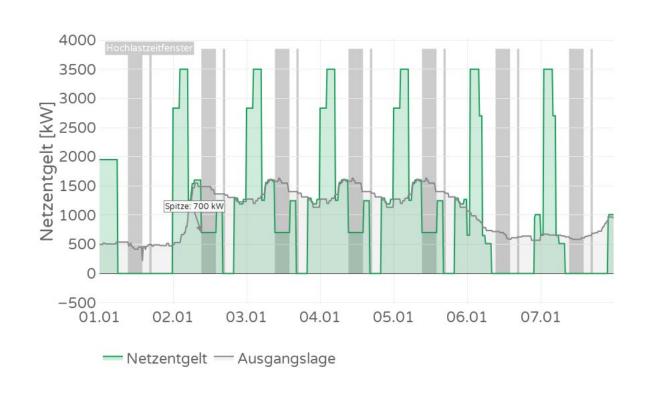


Durch die Kombination der Erlöse werden im Jahr **Jahr 671.269 € Energiekosten eingespart**

Mit einer Lastspitzenkappung durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.



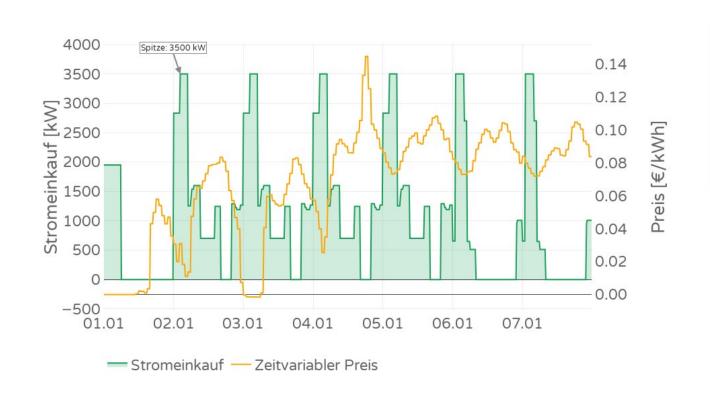
Variante 5 MWh | ohne Atypik

Die Spitzenlast wurde auf 2.173 kW geglättet. Dies führt zu um 72.316 € reduzierten Netzentgelten.

Mit atypischer Netznutzung durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.



Variante 5 MWh | ohne Atypik

Die Spitzenlast wurde auf 2.173 kW geglättet. Dies führt zu um 72.316 € reduzierten Netzentgelten.

Mit einer **Beschaffungsoptimierung** durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

Im aktuellen System werden 12.665.270 kWh zu 2.026.443 € pro Jahr aus dem Netz bezogen.

Variante 5 MWh | ohne Atypik

Im optimierten System gibt es einen Reststrombezug mit Speicher von 12.859.578 kWh aus dem Netz mit "Dynamischer Stromtarif" Tarif zu 1.427.491 € jährlich.

Vorstellung des aktuellen Energiesystems inkl. Lastganganalyse und wirtschaftlichen Faktoren

Variante 5 MWh | ohne Atypik

Vorstellung eines optimierten Energiesystems **ohne** atypische Netznutzung inkl. Wirtschaftlichkeitsrechnung

Variante 5 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Variante 10 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Vergleich der Varianten

Wirtschaftlicher Vergleich verschiedener grüner Energiesysteme

Weiteres Vorgehen

Nächste Schritte und Ansprechpartner

Die **Optimierung** hat folgendes Energiesystem **technisch und wirtschaftlich ausgelegt**

Batteriespeicher

Es wurde ein Batteriespeicher 5.000 kWh / 2.500 kW geplant. Vollzyklen pro Jahr: 553 Investitionssumme (CAPEX)

Mittlere Rendite

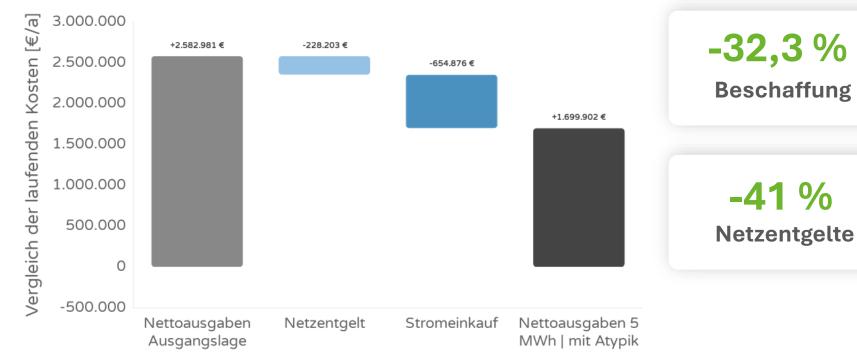
60,2 %

Amortisationszeit

1,7 Jahre

Kapitalwert Über 20 Jahre

7.679.135 €



Reduktion der Energiekosten um

34,2 %

Durch die Kombination der Erlöse werden im Jahr Jahr 883.079 € Energiekosten eingespart

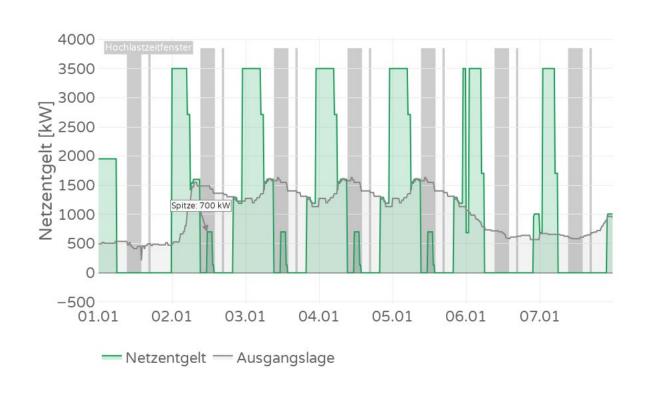
Es werden 654.876 € pro Jahr Stromkosten durch optimierte Beschaffung eingespart.* **Beschaffung**

Es werden 228.203 € pro Jahr Netzentgelte eingespart.*

Mit einer Lastspitzenkappung durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

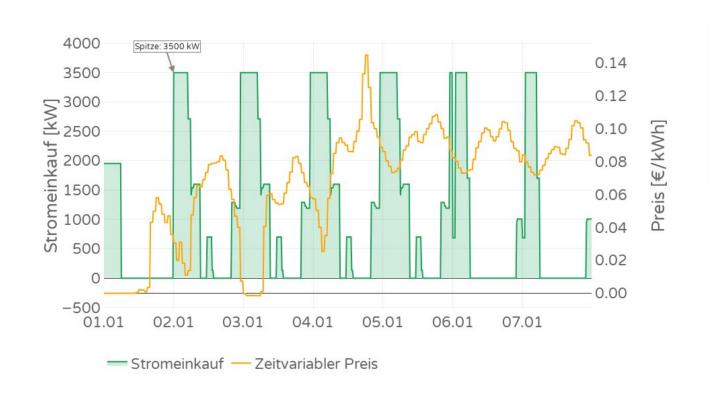
Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.



Variante 5 MWh | mit Atypik

Die Spitzenlast wurde auf 1.287 kW geglättet. Dies führt zu um 228.203 € reduzierten Netzentgelten.

Mit atypischer Netznutzung durch den Speicher können folgende Effekte erzielt werden


Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.

Die Spitzenlast wurde auf 1.287 kW geglättet. Dies führt zu um 228.203 € reduzierten Netzentgelten.

Mit einer **Beschaffungsoptimierung** durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

Im aktuellen System werden 12.665.270 kWh zu 2.026.443 € pro Jahr aus dem Netz bezogen.


Variante 5 MWh | mit Atypik

Im optimierten System gibt es einen Reststrombezug mit Speicher von 12.948.803 kWh aus dem Netz mit "Dynamischer Stromtarif" Tarif zu 1.371.567 € jährlich.

Vorstellung des aktuellen Energiesystems inkl. Lastganganalyse und wirtschaftlichen Faktoren

Vorstellung eines optimierten Energiesystems **ohne** atypische Netznutzung inkl. Wirtschaftlichkeitsrechnung

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Variante 10 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Vergleich der Varianten

Wirtschaftlicher Vergleich verschiedener grüner Energiesysteme

Weiteres Vorgehen

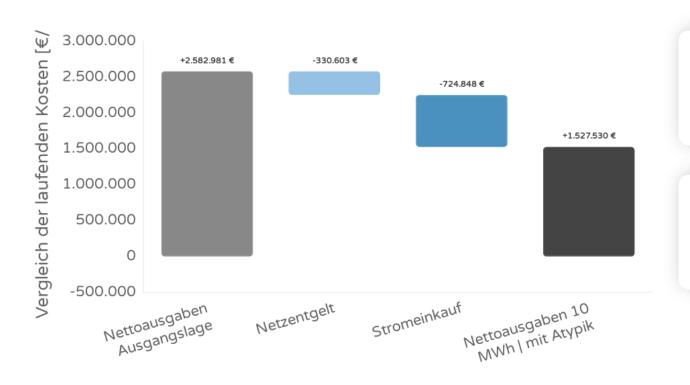
Nächste Schritte und Ansprechpartner

Die Optimierung hat folgendes Energiesystem technisch und wirtschaftlich ausgelegt

Batteriespeicher

Es wurde ein Batteriespeicher 10.000 kWh / 5.000 kW geplant. Vollzyklen pro Jahr: 433

Investitionssumme 6.000.000€ (CAPEX) Mittlere Rendite 35,6 % 2,8 Jahre **Amortisationszeit** 7.482.575 € Kapitalwert Über 20 Jahre Reduktion der

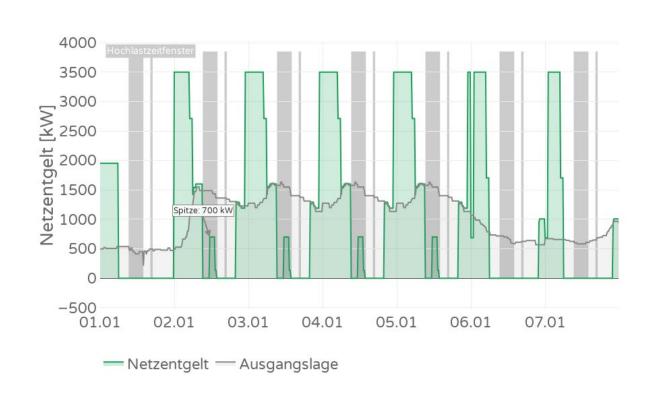


Energiekosten um

40,9 %

Durch die Kombination der Erlöse werden im Jahr **Jahr 1.055.451 € Energiekosten eingespart**

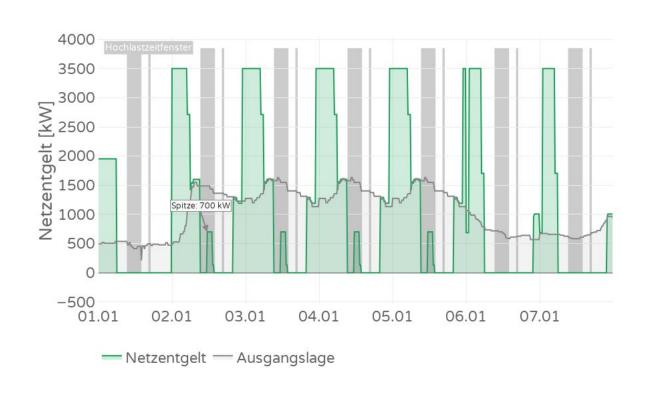
-35,8 %
Beschaffung


Es werden 724.848 € pro Jahr
Stromkosten durch optimierte
Beschaffung eingespart.*

Es werden 330.603 € pro Jahr
Netzentgelte eingespart.*

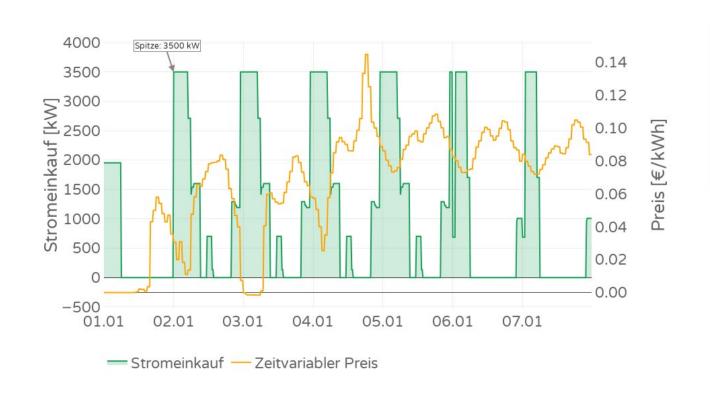
Netzentgelte

Mit einer Lastspitzenkappung durch den Speicher können folgende Effekte erzielt werden


Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.

Die Spitzenlast wurde auf 700 kW geglättet. Dies führt zu um 330.603 € reduzierten Netzentgelten.

Mit atypischer Netznutzung durch den Speicher können folgende Effekte erzielt werden


Die Spitzenlast wurde mit 2.591 kW erreicht und 556.538 € Netzentgelte werden gezahlt.

Die Spitzenlast wurde auf 700 kW geglättet. Dies führt zu um 330.603 € reduzierten Netzentgelten.

Mit einer **Beschaffungsoptimierung** durch den Speicher können folgende Effekte erzielt werden

Ausgangslage

Im aktuellen System werden 12.665.270 kWh zu 2.026.443 € pro Jahr aus dem Netz bezogen.

Variante 10 MWh | mit Atypik

Im optimierten System gibt es einen Reststrombezug mit Speicher von 13.109.272 kWh aus dem Netz mit "Dynamischer Stromtarif" Tarif zu 1.301.595 € jährlich.

Vorstellung des aktuellen Energiesystems inkl. Lastganganalyse und wirtschaftlichen Faktoren

Vergleich der Varianten

Wirtschaftlicher Vergleich verschiedener grüner Energiesysteme

Variante 5 MWh | ohne Atypik

Vorstellung eines optimierten Energiesystems **ohne** atypische Netznutzung inkl. Wirtschaftlichkeitsrechnung

Weiteres Vorgehen

Nächste Schritte und Ansprechpartner

Variante 5 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Variante 10 MWh | mit Atypik

Vorstellung eines optimierten Energiesystems **mit** atypischer Netznutzung inkl. Wirtschaftlichkeitsrechnung

Ein wirtschaftlicher Vergleich der Varianten

5 MWh Lohne Atynik

* Bei Atypik die Lastspitze innerhalb der HLZ

10 MWh | mit Atynik

	5 MWII OIIIIE ALYPIK	5 MWII IIIIL ALYPIK	10 MWII IIIIt Atypik
Lastspitze Ausgangslage : 2.591 kW Benutzungsstunden Ausgangslage : 4.889 h/a	Lastspitze *: 2.173 kW Benutzungsstunden: 5.918 h/a	Lastspitze *: 1.287 kW Benutzungsstunden: 10.064 h/a	Lastspitze *: 700 kW Benutzungsstunden: 18.728 h/a
Anfangsinvestition	1.500.000	1.500.000	3.000.000
CAPEX	3.000.000€	3.000.000€	6.000.000€
Mittlere Rendite	46 %	60,2 %	35,6 %
Amortisationszeit	2,2 Jahre	1,7 Jahre	2,8 Jahre
Einsparungen im ersten Jahr	671.269	883.079	1.055.451
Einsparungen Über 20 Jahre	14.999.295	19.475.829	22.223.959
Kapitalwert Über 20 Jahre	5.513.703€	7.679.135 €	7.482.575 €
Reduktion der Energiekosten	26 %	34,2 %	40,9 %

5 MWh | mit Atynik

